Image by S. Ossokine, A. Buonanno (Max Planck Inst. Gravitational Phys.) and W. Benger (Airborne Hydro Mapping) from Nature 530, 261–262 (18 February 2016)

Listening to the Universe with LIGO

An introduction to the new field of Gravitational Wave Astronomy

Eric Myers Department of Physics and Astronomy SUNY College at New Paltz

Eric Myers (Professional)

B.A. Pomona College, Claremont, CA double major in math & physics

Post-doctoral research fellowships: Brookhaven National Laboratory, Upton, NY Dalhousie University, Halifax, Nova Scotia & Boston University Center for Relativity, at the University of Texas at Austin

Research Physicist, University of Michigan: Worked on the DØ experiment at Fermilab and the ATLAS experiment at CERN.

M.Phil & Ph.D., Yale University,

in high-energy theoretical physics

Physics Teaching Faculty at: Parks College of St. Louis University University of Michigan, Ann Arbor Vassar College (×2) SUNY New Paltz (×2) United States Military Academy

Hometown: Salem, OR Lived in: Claremont, CA Salt Lake City, UT New Haven, CT Long Island, NY Halifax, Nova Scotia Boston, MA Austin, TX Poughkeepsie, NY Ann Arbor, MI Poughkeepsie, NY

Private Pilot, Airplane, Single Engine Land Rated for Instrument, Airplane & "conventional" gear About 500 hrs total flight time (but no recent activity)

Past Positions

- Maintenance Officer, University of Texas Flying Club
- Vice-Commodore, University of Michigan Sailing Club (and invented Ultimate Frisbee for Sailing)
- Treasurer, Mid-Hudson Astronomical Association

Daughter Amanda, now 10 years old

2015: Discovery of Gravitational Waves

INSPIRAL

In 2015 the Laser Interferometer Gravitational Wave Observatory (LIGO) detected the faint signal from the merger of black holes, by detecting their gravitational waves!

HANFORD, WASHINGTON

LIVINGSTON, LOUISIANA Illustration by Aurore Simonnet (http://auroresimonnet.com)

Gravitational Waves were predicted by Einstein 100 years earlier.

RINGDOWN

2017: Neutron star coalescence!

Gravitational-wave time-frequency map

Event GW170817 (2017 August 17) was first with E-M counterparts.

This is "multi-messenger" astronomy.

2017 Nobel Prize in Physics

2019: Five new candidates in first month

Since Observation Run 3 (O3) began on 1 APRIL 2019, there have been 5 candidates events detected (and one false-alarm)

Event #S190426c may be a neutron star being swallowed by a black hole.

Questions?

- What are Gravitational Waves?
- How have they been detected?
- What is LIGO?
- Why has this been so difficult?
- What has LIGO found so far?
- What's next?

• Can I play too?

General Relativity: space-time is curved!

In *General Relativity* (Einstein, 1916), gravitation is described as being a property of the geometry of space + time = "space-time"

Two Principles: Matter curves space-time

and

Objects in "free-fall" travel in "straight" paths in the curved space.

Curved path of an asteroid passing Earth.

General Relativity: space-time is curved!

In *General Relativity* (Einstein, 1916), gravitation is described as being a property of the geometry of space + time = "space-time"

Two Principles: Matter curves space-time

and

Objects in "free-fall" travel in "straight" paths in the curved space.

Deflection of starlight by the Sun.

What are gravitational waves?

Astronomy until now has been done using *Electromagnetic Waves* (which include radio, infrared, visible light, ultraviolet, x-rays, and gamma rays).

These are all time-varying oscillations of electromagnetic fields.

Deflection of starlight by the Sun.

What are gravitational waves?

Astronomy until now has all been done with *Electromagnetic Waves* (which include radio, infrared, visible light, ultraviolet, x-rays, and gamma rays).

These are all time-varying oscillations of electromagnetic fields.

Gravitational Waves are time-varying oscillations of the curvature of space-time, caused by a changing mass distribution.

These oscillations are not instantaneous: they travel at the speed of light.

Oscillations due to orbiting stars

Comparison with EM waves

Electromagnetic Waves

- \checkmark Travel at the speed of light
- ✓ "transverse"
- ✓ Vector dipole in both E and B
- Two polarizations: horizontal and vertical
- ✓ Solutions to Maxwell's Eqns.
- ✓ EM waves can be generated by a <u>changing</u> dipole charge distribution

Gravitational Waves

- \checkmark Travel at the speed of light
- ✓ "transverse"
- *Tensor* quadrupole distortions of space-time
- \checkmark Two polarization: "+" and "x"
- \checkmark Solutions to Einstein's Eqns.
- ✓ Gravitational waves require <u>changing</u> quadrupole mass distribution.

Comparison with EM waves

Electromagnetic Waves

- \checkmark Travel at the speed of light
- ✓ "transverse"
- ✓ Vector dipole in both E and B
- Two polarizations: horizontal and vertical
- ✓ Solutions to Maxwell's Eqns.
- ✓ EM waves can be generated by a <u>changing</u> dipole charge distribution

Gravitational Waves

 \checkmark Travel at the speed of light

✓ "transverse"

- *Tensor* quadrupole distortions of space-time
- \checkmark Two polarization: "+" and "x"
- \checkmark Solutions to Einstein's Eqns.
- ✓ Gravitational waves require <u>changing</u> quadrupole mass distribution.

How to detect gravitational waves?

Simplest example: the "bar-bell" detector

Pioneered by Joseph Weber at University of Maryland in 1960's (no detection)

Indirect Evidence

Taylor and Hulse studied PSR1913+16 (two neutron stars, one a pulsar) and measured orbital parameters and how they changed:

The measured precession of the orbit exactly matches the expected loss of energy due to gravitational radiation.

(Nobel Prize in Physics, 1993)

Michelson Interferometer

https://en.wikipedia.org/wiki/Michelson_interferometer

Michelson Fabry-Perot Interferometer

Measuring ΔL in arms allows the measurement of the <u>strain</u>, which is proportional to the gravitational wave amplitude

 $h = \frac{\Delta L}{L}$

(Larger *L* is better, and multiple reflections increase effective length.)

Laser Interferometer Gravitational wave Observatory

LIGO Livingston Observatory (LLO) Livingston Parish, Louisiana L1 (4km)

LIGO Hanford Observatory (LHO) Hanford, Washington H1 (4km) and H2 (2km)

Funded by the National Science Foundation; operated by Caltech and MIT; the research focus for ~ 1000 *LIGO Scientific Collaboration* (LSC) members worldwide.

The LIGO Observatories

LIGO Hanford Observatory (LHO)

H1:4 km arms

H2:2 km arms

LIGO Livingston Observatory (LLO) L1 : 4 km arms

- Adapted from "The Blue Marble: Land Surface, Ocean Color and Sea Ice" at visibleearth.nasa.gov
- NASA Goddard Space Flight Center Image by Reto Stöckli (land surface, shallow water, clouds). Enhancements by Robert Simmon (ocean color, compositing, 3D globes, animation). Data and technical support: MODIS Land Group; MODIS Science Data Support Team; MODIS Atmosphere Group; MODIS Ocean Group Additional data: USGS EROS Data Center (topography); USGS Terrestrial Remote Sensing Flagstaff Field Center (Antarctica); Defense Meteorological Satellite Program (city lights).

LIGO Timeline

What Limits LIGO Sensitivity?

- Seismic noise & vibration limit at low frequencies
- Atomic vibrations (thermal noise) inside components limit at mid frequencies
- Quantum nature of light (*shot noise*) limits at high frequencies
- Myriad details of the lasers, electronics, etc., can make problems above these levels

Expert Service. Unbeatable Price.	Weekly Ad	Credit Cards Gift Cards Gift Ideas	s Registry Order Status 🎦 Store Locator
BEST PRODUCTS SE	ERVICES DEALS	Search Best Buy	Sign In Create Account
Compare Prod	ucts	LIGO-T060156-01-I, LIG	O-T060091-00-I, https://www.advancedligo.mit.edu/daq.html
	>	* ×	×
Product Specifications	Initial LIGO	Enhanced LIGO	Advanced LIGO
Construction:	1995 - 2002	2007 - 2009	2011 - 2015
Data Collection:	2002 - 2007	2009- 2010	2015 -
Laser Power:	10 W	30-35 W	200 W
Output mode cleaner:	NO	YES	YES
In-vacuum readout HW:	NO	YES	YES
Active Seismic Isolation:	LHO: NO	LHO: NO	LHO: YES
	LLO: NO	LLO: YES	LLO: YES
Seismic cutoff freq:	40 Hz	40 Hz / 10 Hz	10 Hz
Data Channels:	12,733	~ 10,000	~ 300,000
Strain Sensitivity (@100Hz):	3 × 10 ⁻²²	~ 1.5 × 10 ⁻²²	3 × 10 ⁻²³
Relative Sensitivity:	× 1	× 2	\times 3 to 5 (eventually \times 10)
Maximum Reach:	10 Mpc	20 Mpc	40-80 Mpc (eventually 200 Mpc)
Cost:	420 M\$	add 2.04 M\$	620 M\$ (add 200 M\$)
	🐺 Add to Cart	🗮 Add to Cart	🗮 Add to Cart

What is the sound of two black holes colliding?

Gravitational waves are not sound waves, but the frequencies can be comparable to the audio range, so we can listen to them.

http://www.ligo.org/science/GW-Inspiral.php

LISTEN TO IT!

Binary neutron stars, 1.5 solar masses each

Binary black holes, 50 solar masses each

http://gmunu.mit.edu/sounds/comparable_sounds/comparable_sounds.html

Image Source: New Scientist

Success! Event GW150914

	Selected f	or a Viewpoint	t in Physics	
PRL 116, 061102 (2016)	PHYSICAL	REVIÊW	LETTERS	12 FEBRUARY 2016
		Ś		
Observation of	Gravitational V	Vaves from	a Binary Bla	ck Hole Merger
				5
	B. I	P. Abbott et al		
I)	JGO Scientific Coll	aboration and '	Virgo Collaboration	on)
	(Received 21 January	2016; published	1 11 February 2016)
On September 14-20	15 at 00-50-45 UTC the	a two detectors of	f the Locar Interferor	natar Cravitational Wave
Observatory simultane	aught observed a transi	ant answitational	wave signal. The si	incler Gravitational-wave
frequency from 25 to 2	50 Uz with a peak amy	tetional wave st	wave signal. The si	It matches the waveform
liequency from 55 to 2	50 Fiz with a peak grav	Itational-wave su	rain of 1.0 × 10	It matches the wavelonn
predicted by general re	lativity for the inspiral	and merger of a	pair of black noies	and the ringdown of the
resulting single black r	ole. The signal was ob-	served with a ma	atched-filter signal-to	o-noise ratio of 24 and a
false alarm rate estima	ted to be less than 1 e	vent per 203 000	0 years, equivalent	to a significance greater
than 5.1 σ . The source l	es at a luminosity distar	$1 \text{ ce of } 410^{+160}_{-180} \text{ M}$	Ipc corresponding to	a redshift $z = 0.09^{+0.03}_{-0.04}$.
In the source frame, the	initial black hole mass	es are $36^{+5}_{-4}M_{\odot}$ a	and $29^{+4}_{-4}M_{\odot}$, and the	e final black hole mass is
$62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M$	$M_{\odot}c^2$ radiated in gravita	ational waves. Al	ll uncertainties defin	e 90% credible intervals.
These observations den	nonstrate the existence o	f binary stellar-m	ass black hole system	ms. This is the first direct

detection of gravitational waves and the first observation of a binary black hole merger.

First Detection!

GW150914, recorded at 09:50:45 UTC on 14 Sept 2015

Event GW150914

Abbott, et. al., Physical Review Letters 116, 061102 (2016) - Figure 1

LIGO/Virgo release first catalog of gravitational-wave events

Questions?

What are Gravitational Waves?
How have they been detected?
What is LIGO?
Why has this been so difficult?
What has LIGO found so far?

- What's next?
- Can I play too?

Image © Tarun Souradeep, from http://www.natureasia.com/en/nindia/article/10.1038/nindia.2016.20

Squeezed Light for "ALIGO+"

SCIENCE NEWS NEEDS YOU Support nonprofit journalism SUBSCRIBE Subscribe now

LIGO LAB/MIT/CALTECH

Search Science News..

NEWS QUANTUM PHYSICS, ASTRONOMY, GRAVITATIONAL WAVES

LIGO will be getting a quantum upgrade

Quantum 'squeezing' light could lead to daily gravitational wave detections BY EMILY CONOVER 2:54PM, FEBRUARY 15, 2019 AddThis

BETTER DETECTOR Scientists have been working on upgrades to LIGO (shown). Soon, the gravitational wave detector will begin using quantum techniques.

"Advanced LIGO Plus," expected to start up in 2024, will make use of "squeezed light"

(LIGO-India will also make use of squeezed light.)

This upgrade will "almost double" the sensitivity of the detectors -UK Research and Innovation

www.sciencenews.org/article/ligo-gravitational-wave-detector-quantum-upgrade

The LISA mission originally consisted of one "Mother" and two "Daughter" spacecraft orbiting the Sun in a triangular configuration, connected by the two arms of a laser interferometer.

The formation trails Earth in its orbit by 20° and the plane of the triangle is 60° from the plane of the ecliptic.

Latest LISA Mission

https://en.wikipedia.org/wiki/Lagrangian_point

LISA Pathfinder

LISA Pathfinder was in a Lissajous orbit around L1 until April 2017. (Now in orbit around Sun.)

3 DEC 2015 Launched 22 JAN 2016 Arrived at Lagrange point L1 16 FEB 2016 Test masses released 8 MAR 2016 Began science mode 30 JUN 2017 Mission Completion 18 JUL 2017 Last command

LISA Pathfinder Results

Questions?

- ✓ What are Gravitational Waves?
- ✓ How have they been detected?
- ✓ What is LIGO?
- ✓ Why has this been so difficult?
- ✓ What has LIGO found so far?
- ✓ What's next?
- Can I play too?
 - GWOSC & Pioneer Academics Einstein@Home Gravity Spy

Gravitational Wave Open Science Center

Online Status-Software -Data-

ano

Some examples of projects using GWOSC data are shown on this page.

Listing a project here does not imply endorsement by LIGO Laboratory, the LIGO Scientific Collaboration or the Virgo Collaboration.

If you have completed a project with GWOSC data, please let us know!

Scientific Publications

Below are the fifty most recent publications citing GWOSC, as listed by INSPIRE HEP.

For a complete list, please query INSPIRE

1) Testing the no-hair theorem with GW150914 Maximiliano Isi, Matthew Giesler, Will M. Jacobies Con Programs arxiv:1905.00869 | INSPIRE

2) Gravitational-Wave Asteroseismology with Fundamental Modes from **Compact Binary Inspirals**

Geraint Pratten, Patricia Schmidt, Tanja Hinderer arxiv:1905.00817 | INSPIRE

3) New Binary Black Hole Mergers in the Second Observing Run of

Student Ashley Disbrow presents her work at the 2014 American Astronomical Society meeting in Washington, DC.

LIGO Open Science Center

LIGO is operated by California Institute of Technology and Massachusetts Institute of Technology and supported by the U.S. National Science Foundation.

Getting Started

Data

Events

Bulk Data Tutorials

Software

Detector Status

Timelines

My Sources

 $\mathsf{GPS} \leftrightarrow \mathsf{UTC}$

About the detectors

Projects

Acknowledge LOSC

LIGO Hanford Observatory, Washington (image: C. Gray)

LIGO Livingston Observatory, Louisiana (image: J. Giaime)

Virgo detector, Italy (image: Virgo Collaboration)

The LIGO Open Science Center provides data from gravitational-wave observatories, along with access to tutorials and software tools.

After primary analysis has been completed, LIGO shares their data openly, along with tutorials and sample code.

See parameter estimation samples

🔀 Join the email list

Pioneer Research Program

For the past 4 summers, I have been working with capable high school students to use the data from LIGO to perform individual research projects.

http://PioneeracAdemics.com/

Initially, students obtained experience with scientific research, which they could list on their college applications.

Starting in 2016, Oberlin College grants course credit and provides an Oberlin transcript to Pioneer students upon their completion of the Pioneer Research Program.

Pioneer Academics student projects

Projects mentored by Eric Myers Final papers: Zhehao Lu | Minqi Fu

Art Installation: Void

Emma Wadley See photo at right https://www.gw-openscience.org/projects/

Possible associated signal with GW150914 in the LIGO data

Hao Liu, Andrew D. Jackson arXiv:1609.08346

Echoes from the Abyss: Evidence for Planck-scale structure at black hole horizons Jahed Abedi, Hannah Dykaar, Niayesh Afshordi arXiv:1612.00266

Modified LIGO data analysis notebook Valentin Baillard

Azure | mybinder | github

Physics From Planet Earth homework problems

Joe Amato and Enrique (Kiko) Galvez See Gravitational Radiation 2 and Gravitational Radiation 3

Non-Gaussian noise and data analysis of laser interferometric gravitational wave detectors

Takahiro Yamamoto, Ph.D. Thesis See JGW-P1605355

Understanding the LIGO GW150914 event

P. Naselsky, A. D. Jackson, Hao Liu See arxiv:1604.06211

Gravitational Wave Detection in the Introductory Lab

Lior M. Burko Georgia Gwinnett College, See arxiv:1602.04666

2015

Pioneer Academics student projects

Projects mentored by Eric Myers Final papers: Jinghong Liang | William Li

Pioneer Academics: http://www.PioneerAcademics.com

Understanding Pioneer Academics

Structure of the ``Program'' for LIGO

Group Meetings:

5 × 90 minutes, via Zoom.com

- 1. Introduction to LIGO
- 2. LIGO Technical Briefing
- 3. Scientific Research, E@H
- 4. LIGO data and LOSC
- 5. Plots & Events Tutorials

LIGO Links:

5 × articles, videos, news, etc... (at least 2 different kinds) posted to Schoology.com

Individual Meetings

5+ × 60 minutes, via Zoom.com

Specific to each project

Python Programming:

0. Installing Python - from python.org
1. "Hello, World!" - print()
2. Aircraft Weight & Balance - assignment
3. Conditional Execution - if/then/else, input()
4. Iteration I - for, map(), float()
5. Iteration II - while, lists, modules, graphing
6. Nested Loops - functions & formatted output
7. Flour Bomb - plotting curves, recapitulation

Paper(s):

- 1. GW & LIGO Background (10%)
- 2. Research Proposal (10%)
- 3. Draft of Final Paper (10%)
- 4. Final Paper (50%)

Desktop Setup

Questions?

- ✓ What are Gravitational Waves?
- ✓ How have they been detected?
- ✓ What is LIGO?
- ✓ Why has this been so difficult?
- ✓ What has LIGO found so far?
- ✓ What's next?
- Can I play too?
 - GWOSC & Pioneer Academics Einstein@Home Gravity Spy

How might GW's be produced?

The most likely astronomical sources are:

Stochastic background

from the early universe (the Big Bang! Cosmic Strings,...) a "cosmic gravitational wave background"

<u>Continuous</u> <u>Wave sources</u>,

such as spinning (and asymmetric!) or oscillating neutron stars ("gravitational pulsars").

Coalescence of binary systems,

inspiral of pairs of neutron stars and/or black holes

(NS-NS, NS-BH, BH-BH)

сні**RP!**

<u>Bursts</u>

from supernovae or other cataclysmic events

Requires changing *quadrupole*.

Spherical symmetric \implies no GW!

or..... something unexpected!

How to search for CW signals?

If the frequency of the signal is constant, then searching for a signal is <u>easy</u>. Starting with Signal + Noise . . .

Take the Fourier Transform to obtain:

There is even a computationally fast algorithm for this, the Fast Fourier Transform (FFT).

But the frequency will change!

The frequency is not expected to be constant, due to:

1. The source losing energy due to "spin down"

- Doppler shift due to Earth's motion about the Sun (one part in 10⁴, with period of 1 year)
- 3. Doppler shift due to Earth's rotation about its axis (one part in 10⁶, with period 1 sidereal day)

Exact form of the modulations depends upon the sky location of the source!

Matched Filtering

In reality h(t) is more complex, and depends on sky position, frequency, spin-down, and signal phase!

And the computational effort goes up like T⁶!

Looks like we're gonna need a bigger computer!

BOINC to the rescue

SETI@home is a distributed computing project searching for distinctive peaks in Arecibo radio data. In 2004 they upgraded to *BOINC*:

Berkeley
Open
Infrastructure for
Network
Computing

BOINC is modular, so that one can replace the "computation thread" and the "graphics thread".

So we did. \Rightarrow

Einstein@Home

Einstein@Home

How to use BOINC to search for a CW GW signal:

- 1. Break the computations up into smaller "*workunits*"
- 2. Send these workunits (WU's) to participating "clients"
- 3. Each WU searches the entire sky (~30,000 points!) for a narrow band of frequencies and the full range of spin-downs, computing the *F*-statistic.
- 4. Client returns top 13,000 candidates to the server for further processing, and receives new WU's.

Screensaver graphics

Einstein@Home status

Einstein@Home - Server Status (as of 17 January 2009)

Einstein@Home server status as of 5:40 PM UTC on Saturday, 17 January 2009 (updated every 20 minutes). The Einstein@Home main server has been continuously up for 167 days 4 hours 24 minutes.

Server status

Program	Host	Status
Web server	einstein	Running
BOINC database feeder	einstein	Running
BOINC transitioner	einstein	Running
BOINC scheduler	einstein	Running
BOINC file uploads	einstein	Running
Einstein S5R4 generator	einstein	Not running
Einstein S5R5 generator	einstein	Running
Einstein S5R4 validator	einstein	Running
Einstein S5R5 validator	einstein	Running
Einstein S5R4 assimilator	einstein	Running
Einstein S5R5 assimilator	einstein	Running
BOINC file deleter	einstein	Running

Download mirror status

Site	Status	Last failure
Albert Einstein Institute	Running	574 h 1 m ago
University of Glasgow LSC group	Running	2596 h 35 m ago
MIT LIGO Lab	Not running	1 h 40 m ago
Penn State LSC group	Running	9 h 45 m ago
Caltech LIGO Lab	Running	1514 h 14 m ago

S5R5 search progress

Total needed	Aiready done	Work still remaining
10,949,633 units	180,730 units	10,768,903 units
100 %	1.651 %	98.349 %
242.8 days	4.0 days	238.8 days (estimated)

Users and Computers

USERS Approximate 439 762 in database with credit 218,958 registered in past 24 hours HOST COMPUTERS Approximate # in database 1,547,449 registered in past 24 1,825 hours with credit 788,393 active in past 7 days 77 159.1 TFLOPS floating point speed

Work and Results

WORKUNITS	Approximate #
in database	514,250
with canonical result	282,783
no canonical result	231,467
RESULTS	Approximate #
in database	1,168,243
unsent	68,703
in progress	242,368
deleted	596,853
valid	567,003
valid last week	433,299
invalid	88
Oldest Unsent Result	6 d 23 h 59 m

As of 16 March 2019:

Participants: 1,015,315 (with credit : 469,715) Computers: 1,770,350 (over × 2 improvement) Floating Point Speed: 5790 TFLOPS (over × 36 improvement)

How you can join

Questions?

- ✓ What are Gravitational Waves?
- ✓ How have they been detected?
- ✓ What is LIGO?
- ✓ Why has this been so difficult?
- ✓ What has LIGO found so far?
- ✓ What's next?
- Can I play too?
 - GWOSC & Pioneer Academics Einstein@Home Gravity Spy

Help scientists at LIGO search for gravitational waves, the elusive ripples of spacetime.

Gravity Spy

Learn more

Get started 🕹

Help scientists at LIGO search for gravitational waves, the elusive ripples of spacetime.

Learn more

Get started 🕹

Try it...

Questions?

- ✓ What are Gravitational Waves?
- ✓ How have they been detected?
- ✓ What is LIGO?
- ✓ Why has this been so difficult?
- ✓ What has LIGO found so far?
- ✓ What's next?
- Can I play too?
 - GWOSC & Pioneer Academics Einstein@Home Gravity Spy