
An Overview of

OpenSpace
Branching and Merging

How we use (or should be using)
git branches

to add features and fix bugs

Eric Myers
February 2017

1

Our process is well described by

"A successful Git
branching model"
By Vincent Driessen

http://nvie.com/posts/a-successful-git-branching-model/

Our source code is kept on GitHub.com

Each feature is developed on a git
branch [on developer's machine(s)]

Two important branches:
master is production code
develop is main development

Developers work on "feature"
branches, which get merged into the
develop branch, which on occasion is
merged into the master branch (and
tagged)

2

Feature Branches

Feature branches may be short lived or exist for a
longer time – as long as it takes to complete the full
feature.

Feature branches should focus on only ONE feature, not
a mix of different things. A developer (or team)
might work on several different branches, not just
one branch that they "own". Other developers
may contribute as needed.

Feature branches generally are branched from
develop, and will later be merged back into
develop.

Long-lived feature branches should be merged into
develop periodically, ... AND they should
periodically pull from develop to incorporate the
latest work from others.

3

OpenSpace/OpenSpace Branches on GitHub
https://github.com/OpenSpace/OpenSpace/

4

Release Branches
A release branch is really a "release candidate," to get ready to release a new
tagged production version
on master.

To begin, branch off of
develop.

Test it thoroughly, on all
platforms, in all ways.

Fix any bugs.

At the end, merge the
results into master

AND
merge the fixes back into
develop.

This is a new proposal,
we have not yet done this.

5

Fixing Bugs

Developers generally fix bugs in their
own branches as they go along.
That's what developers do.

A serious bug in a production version
requires a "hotfix".

As with a release branch, corrections
are merged into master,
AND back into develop.

Less serious bugs can be fixed by
branching off of develop, or a
feature branch, then merging back
into develop.

6

Guidelines (for developers)

Developers should always merge develop into their
feature branch when the feature branch is ready
to be merged with develop. Resolve any
conflicts or problems there, then make a git pull
request to merge the feature branch into
develop.

Do not use git rebase on a public branch. And all the
branches on GitHub are public branches. Instead,
use git merge.

Bugs should be reported as "issues" on GitHub, and I
suggest bug-fix branches be named after the issue
(eg. "issue173").

Never use git push on develop or master.
Instead, push your work to the feature branch on
GitHub, then create a git pull request on GitHub
and let the Codemasters pull into develop or
master after sufficient testing.

7

Above and Beyond
I think of feature branches like spacecraft flying

around the mothership (develop), and
sometimes docking. And in this analogy we
should remember there is a difference between
"rendezvous" and "docking".

"Rendezvous" is getting close. The feature branch is
getting close to ready to be pulled into develop .
In the diagrams we've studied the feature branch
now moves closer to the develop branch.

Before you can dock, you have to be ready. Pull from
the develop branch, resolve any conflicts, and
test the merged code.
• It must BUILD on all 3 platforms (use Jenkins)
• It must WORK on all 3 platforms.

Then create a git pull request on GitHub. The actual
git merge/pull into develop is "docking".

NEVER BREAK the develop branch!

feature develop

8

"A successful Git
branching model"
By Vincent Driessen

http://nvie.com/posts/a-successful-git-branching-model/

This picture should now make a lot
more sense.

The article should now make sense
– read it (if you wish).

9

Branch Status

These 3 columns
are Jenkins BUILD
status. There should
be 3 more columns
for TEST status.

10

OpenSpace Releases

Name Version Release Date

Prerelease-5 0.1.0 2015-05-14 Pluto-Palooza event at AMNH

Prerelease-7 0.2.0 2015-07-08 New Horizon’s closest approach to Pluto

Prerelease-8 0.3.0 2016-04-14 CCMC

Prerelease-9 0.4.0 2016-05-31 IPS / Eurovision

Prerelease-10 0.5.0 2016-09-22 Kulturnatten

Prerelease-11 0.6.0 2016-12-09 AGU

Executables can be downloaded for the first two from
http://openspaceproject.com/?page_id=352

11

http://openspaceproject.com/?page_id=352

