An Overview of

OpenSpace
Branching and Merging

Eric Myers
February 2017

release
branches hotfixes

feature

branches develop master

Our process is well described by — ({j
"A successful Git £ —
branching model” o

production:
hotfix 0.2

By Vincent Driessen

Incorporate
bugfix in

Our source code is kept on GitHub.com

Each feature is developed on a git
branch [on developer's machine(s)]

“next release”
means the release
after 1.0

Two important branches:
master is production code
develop is main development

Developers work on "feature"
branches, which get merged into the
develop branch, which on occasion is
merged into the master branch (and
tagged)

http://nvie.com/posts/a-successful-git-branching-model/

feature

develop
Feature Branches branches
Feature branches may be short lived or exist for a
longer time — as long as it takes to complete the full
feature.
Feature branches should focus on only ONE feature, not
a mix of different things. A developer (or team)
might work on several different branches, not just
one branch that they "own". Other developers
may contribute as needed.
Feature branches generally are branched from
develop, and will later be merged back into O
develop.
Long-lived feature branches should be merged into \$
develop periodically, ... AND they should

periodically pull from develop to incorporate the
latest work from others.

https://github.com/OpenSpace/OpenSpace/

OpenSpace/OpenSpace Branches on GitHub

OpenSpace / OpenSpace

<> Code Issues 78

The official GitHub repository for the open-source project OpenSpace http://OpenSpaceProject.com

{0 3,932 commits

* Branch: master ~ New pull request

Switch branches/tags

Branches Tags

® Unwatch ~

Pull requests 1 Projects 2 Wiki Pulse Graphs

i¥ 21 branches > 9 releases 42 15 contributors

Create new file Upload files

+h 'develop’

tk.xml configuration file for high resolution screenshots

cene folder; remove lodesritest and restructure lodglobes...

feature/NewAtmosphere
feature/downloadmanager
feature/dynamicRootGraph
feature/galaxy
feature/globebrowsing
feature/iISWA
feature/kameleonvolume-merge

feature/kameleonvolume

oul changes of moving LoglLevel out of LogManager

oul changes of moving LoglLevel out of LogManager

on and Scale factories from base module to OpenSpace core
ime monitoring of StatsCollector data

)endent kernels in OsirisRex

i1sed shaders for postRender pass

oul changes of moving LoglLevel out of LogManager

yright header

YFork 7

Edit

= MIT

Clone or download ~

Latest commit dbe46b8 on Dec 14, 2016

2 months ago
5 months ago
2 months ago
2 months ago
2 months ago
2 months ago
7 months ago
2 months ago
2 months ago
2 months ago

2 months ago

This is a new proposal,

REIease Br‘anches we have not yet done this.

A release branch is really a "release candidate," to get ready to release a new
tagged production version
onmaster.

Start of
release

To begin, branch off of -
develop. \ ~ 1.0

Test it thoroughly, on all
platforms, in all ways.

w

|

Fix any bugs.

At the end, merge the
results into master

AND CY)
merge the fixes back into
develo Bugfixes from v
P rel. branch
may be
continuously

Tag
1.0

Fixing Bugs

Developers generally fix bugs in their
own branches as they go along.
That's what developers do.

A serious bug in a production version
requires a "hotfix".

As with a release branch, corrections
are merged into master,
AND back into develop.

Less serious bugs can be fixed by
branching off of develop, or a
feature branch, then merging back
into develop.

develo

O— Q0«00«00

p hotfixes master

;

aac iy

Severe bug
fixed for
production:
hotfix 1.2.1

e/

Guidelines (for developers)

Developers should always merge develop into their
feature branch when the feature branch is ready
to be merged with develop. Resolve any
conflicts or problems there, then make a git pull
request to merge the feature branch into
develop.

Do not use git rebase on a public branch. And all the
branches on GitHub are public branches. Instead,
use git merge.

Bugs should be reported as "issues" on GitHub, and |
suggest bug-fix branches be named after the issue
(eg. "issuel73").

Never use git push on develop or master.
Instead, push your work to the feature branch on
GitHub, then create a git pull request on GitHub
and let the Codemasters pull into develop or
master after sufficient testing.

Above and Beyond

| think of feature branches like spacecraft flying
around the mothership (develop), and
sometimes docking. And in this analogy we
should remember there is a difference between
"rendezvous" and "docking".

"Rendezvous" is getting close. The feature branch is

getting close to ready to be pulled into develop.
In the diagrams we've studied the feature branch
now moves closer to the develop branch.

Before you can dock, you have to be ready. Pull from
the develop branch, resolve any conflicts, and
test the merged code.

* It must BUILD on all 3 platforms (use Jenkins)
* It must WORK on all 3 platforms.

Then create a git pull request on GitHub. The actual
git merge/pull into developis "docking".

NEVER BREAK the develop branch!

feature

develop

release
feature

branches develop

"A successful Git T p
branching model" |

By Vincent Driessen

branches hotfixes master

Severe bug
fixed for
production:
hotfix 0.2

Incorporate
bugfix in

This picture should now make a lot
more sense.

The article should now make sense
— read it (if you wish).

“next release”
means the release
after 1.0

http://nvie.com/posts/a-successful-git-branching-model/

Branch Status

MacOS Last Commit

Linux Win

Branch Name

master 14Dec2016
develop 9Jan2016
feature/openvr 24Jan2016
feature/scenegraph-refactor 15Dec1016
feature/globebrowsing 6Dec2016
feature/scenegraph 7Nov2016
feature/dynamicRootGraph 4Nov2016
feature/kamelianvolume 290ct2016
feature/NewAtmosphere 70ct2016
feature/downloadmanager 28Sep2016
feature/starnames 20Jul2016
feature/galaxy 3Jun2016
feature/screenspaceimage 4Apr2016

These 3 columns
are Jenkins BUILD
status. There should
be 3 more columns
for TEST status.

A|B

5|3
8|3
3|3
0|23
68 | 197
56 | 197
60 | 209
6| 235
31258

Primary Developers
Everybody
Everybody

Erik Sunden

Emil Axelson

Kalle & Erik

Emil Axelson
Jonathas Costas, Emil Axelson
Emil Axelson
Jonathas Costas
Alex Bock

Matthew Territo

Emil Axelson

Alex Bock

10

OpenSpace Releases

Name Version Release Date

Prerelease-5 0.1.0
Prerelease-7 0.2.0
Prerelease-8 0.3.0
Prerelease-9 0.4.0
Prerelease-10 0.5.0
Prerelease-11 0.6.0

2015-05-14
2015-07-08
2016-04-14
2016-05-31
2016-09-22
2016-12-09

Pluto-Palooza event at AMNH

New Horizon’s closest approach to Pluto
CCMC

IPS / Eurovision

Kulturnatten

AGU

Executables can be downloaded for the first two from
http://openspaceproject.com/?page id=352

http://openspaceproject.com/?page_id=352

